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REFLECTIVITY OF A LAYER OF POLYDISPERSED WATER DROPS 

Yu. A. Popov EDC 536.3 

Spectral and integral reflectivities of a semi-infinite layer of water droplets 
are calculated. Particle size distribution is assumed to be of F-form. The 
results of numerical calculations for integral reflectivity are presented by a 
simple formula. 

The calculations are based on the assumption of the "softness" of the particles In--i~ i 
~i. Hulst's formula [I, 2] is valid for determining the dimensionless attentuation coef- 
ficient of such particles 

where .p '  = 2 p ( n - - 1 ) ,  p = 2nr/L. 
less absorption coefficient 

K = 2 -4-- sinp' -q- 4,__._~ ( 1  cosp'), (1) 
p' p 

We will use a modification of this formula for the dimension- 

0) 2 60 

where Ka~ is the dimensionless absorption coefficient of particles with an infinite radius: 

= 4a (n) •  

The appearance of function a(n) is shown in [3], and the following approximate expression 
was derived in [4] 

(3) 

[ (n2 1)312] 
a ( n k = n  z 1 - -  n z . (4) 

Table I shows values of Ka~ calculated in accordance with the electromagnetic theory at 
~p>>l, • Table 2 shows the results of calculations with Eq. (2) compared to the re- 
sults of a rigorous solution. Equation (I) for K a leads to a substantial divergence from the 
correct values compared to Eqs. (2) and (3). 

To solve the transfer equation, apart from K and K a we need to know the scattering func- 
tion. We will limit ourselves to an approximate solution with one functional parameter, for 
which we Will use the mean cosine of the scattering angle for minimum scattering. The follow- 
ing design formula was derived from an analysis of data obtained on an electronic digital 
computer in accordance with the Mie theory 

= ~ [I -- e-' zp (I + 1.2p)], (5) 

and is valid for n~ 1.3 and • The following approximate expression was deriw~d for the 
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mean cosine of optically coarse (p >> i), nearly transparent (4• particles 

~| I n - - 1  

2.25 ' 
(6) 

which is sufficiently accurate with l~n~-~l.7. 

We will assume that the water drops in the layer are polydlspersed. Actual calculations 
were performed for a radius distribution density in the form of a flrst-order g,mm~ distri- 
bution: 

- -2r lT  
f (r) = ~ e (7) 

The radiative transfer equation includes the linear attenuation coefficient k, linear absorp- 
tion coefficient a, and mean cosine of scattering angle for minimum scattering. These quan- 
tities have the form 

k = __CS C$. < K~ >, (8) 
4 < K > ,  = =  4 

<-~ > = 4gN i ~(r) K,f (r) dr/S ( K, >, (9 )  
0 

i where S = 4 g N  ~ f ( r ) d r - -  the specific surface of the particle; N 
0 

particles per unit mass of the particles 

( K > = 4~N i r~Kf (r) dr~S; 
o 

K s = K--Ku. The expressions for ( K a ) a n d  < K , )  are similar to Eq. 
averaged for the g,mm, distribution of a whole series in [5]. 

Sp~ + ~ p~ + p~ 
<K> = 2  (1 + pb '  ' 

is the number of 

(IO) 

(i0). Equation (i) was 
It was found from [5] that 

(ii) 

TABLE 1. Value of Coeffi- 
cient Ka~ 

n K s .  n K s .  

1.2 
1.3 
1,5 
2,0 

0.98 
0.o7.5 
0.97 
0.90 

3.0 
4.0 
5,0 

10.0 

0.78 
0.68 
0.61 
0.39 

TABLE 2. Comparison of Results of Calculation of K<z by Eq. 
(2) with the Results of a Rigorous Solution 

0.25 
0.5 
1.0 

n = l . 2 ;  ~r 

Xa (~ K a 

0.076 ] 0.062 
0 . 1 4 6  0 . 1 2 7  
0.268 0.265 

I 
- -  i 2.0 

l 5.0 
o.~211 0.0o177 L lO.O 

0.456 1 0.516 
0.751 0.930 
0.900 1.130 

n=l.3; x '=Q.000G2  

K s ( 2 )  

0.00422 
0.0105 
0.0211 

Ka 

0.00448 
0.0128 
0.0272 
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where p1-~ (n -- l) p; p--= 2~/l For <Ka> , we obtained from Eq. (2) 

where 

( 1 2 )  

: 4a ~)~-P/Ka| (13) 

The formula  fo r<6> i s  v e r y  awkward, so t h a t  we w i l l  approx imate  i t  w i th  the  e x p r e s s i o n  

( {> = ~. [ I -- e-3P(l q- 3p)] (14) 

At low values of [, the value of < K ) computed from Eq. (ii) may turn out to be smaller than 
the value of < Ka > calculated from Eq. (12) in view of the approximate nature of Eqs. (i) and 
(2). Thus, at low values of ~ it will be assumed that Eq. (ii) determines the dimensionless 

scattering coefficient and that the attenuation coefficient is calculated by adding the scat- 
tering and absorption coefficients. This procedure is applicable in the case Ka~ K. 

Using Eqs. (11)-(14), we calculated the spectral and integral reflectivities of a semi- 
infinite layer of water droplets. The layer is being struck by hemispherical radiations i.e., 
the intensity of the latter is independent of the angle of incidence. With a spherical scat- 
tering function, the solution is expressed through the moments of Ambartsumyan's function [6], 
which was tabulated in [7]. The results of the numerical calculations are, accura~e to within 
several units of the third sign, approximated by the expression 

R- I--V~ 1%'V~ 0'166'/3( 1 --61/3), (15) 

where 8=l--y; ~= (k--a)/k- the probability of survival of a photon in a collision. Table 
3 shows a comparison of the results obtained with Eq. (15) with the results of precise calcu- 
lations. The transition to a nonspherical scattering function is made by means of the simi- 

/ 

0 5./0 y 

/ \ r  

I 

Fig. i, Spectral reflectivity of a semi- 
infinite layer of water droplets with par- 
ticle radii distribution (7). v, cm -I. 

TABLE 3. Comparison of Precise Calculations with Calcula- 
tions Using Eq. (15) 

0.1 
0.2  
0.3 
0.4 
0.5 
0.6 
0,7 

a 

0.0217 
0-0462 
0,0745 
0.1074 
0,1466 
0.1947 
0.2565 

RI15) 

0.0210 
0.0451 
0.0730 
0,1059 
0.1454 
0.1941 
0.2568 

0 .8  
0.9 
0.925 
0,95 
0.975 
0.985 
O. 995 

0.3419 
0.4780 
0.5296 
0.5966 
O. 6950 
O. 7546 
0.8498 

~(15) 

0.3431 
0.4797 
0,5310 
0.5973 
0.6938 
0.7520 
0.8452 
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TABLE 4. 

r .~-n 

0.33 
0.65 
1.0 

Reflectivlty of Layer of Water Droplets 

t To ~ 1 0  '~o ~ t m  

I 0.68 0.69 
0.71 0.73 
0.70 0.71 

i| 

0,069 il 1.6,5 
o.o19 Jl 
0.012 

'C,=I 0 Te==m 

0,68 0,68 
0.62 0.62 
0.21 0.21 

C. kgf/m' 

0.009 
0.021 
0.28 

larity relations [6] 

1--Vsp=-i--v<~> " (16) 

Similar relations exist for optical thickness. They can b e  derived in a quasiuniform approx- 
Imatlon and a first approximation by the method of spherical harmonics for a medium of arbi- 
trary geometry. Allowing for Eq. (16), the expression for spectral reflectivity will have 
the form of Eq. (15), but 

Integral reflectivity was determined by the formula 

= 

(17) 

1 SR(x) xs--] dx, (18) 

0 

where x = hcv/kT. Numerical integration was done by the method of trapezoids using the ta- 
ble of empirical results for the complex refractive index of water in [2]. In the interval 
of temperatures of the incident (on the layer) radiation 1000~T~.2500~ and mean radii 
0.5 ~ 5  ,m, the results are described with an error not exceeding 10% by the formula 

~ --57F-~I 0"235( T II'8 } (19) ,-expj__ ' 

in which the mean radius of the particles is expressed in micrometers. The results of calcu- 
lations of the spectral reflectivity of a layer of water droplets with size distribution (7) 
are shown in Fig. 1 at ~ = 0.5 and 5 um. The sharply selective character of the medium is 
apparent from these results. 

Table 4 shows the results of calculation of the reflectivity of a layer of monodispersed 
water droplets at optical thicknesses To = 10 and To = = in a first approximation by the me- 
thod of spherical harmonics, as in [9], using the results of a rigorous solution conforming 
to Mie's theory. The temperature of the radiation incident on the layer was 1800~ Integra- 
tion over the spectrum in calculating the results in the table was done by the method of qua- 
dratures with Planck's weight function [8] with one component, so the results are an estimate. 
The last column in Table 4 shows values of particle concentration at which the optical thick- 
ness of the layer To = I0 at a wavelength corresponding to the component of the integration 
formula for a layer of thickness L = 0.2 m. The reflection coefficient in this case is only 
slightly lower than at To = =, so that the value of CL from the table practically ensures the 
effect of a semilnflnite medium. The results of the calculations using a rigorous electro- 
magnetic theory of light scattering by particles reveal the existence of an optimum particle 
size at which reflectivlty will be maximal if x~= 0. 

NOTATION 

K, dimensionless attenuation coefficient) Ka, dimensionless absorption coefficient; 
r, particle radius; ~, mean particle radius; %, radiation wavelength; n, refractive index; 
% , absorption index; p, parameter for particle size; ~, mea~ cosine of scattering angle 
for minimum scattering; <~>, the same for minimum volume of polydispersed particles; C, 
particle concentration; 7, ratio of scattering coefficient to attenuation coefficient; < >, 
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mean value; f, density of particle radii distribution; R, spectral reflectivity; R, integral 
reflectivity; ~, Reimann zeta function; c, speed of light; h, Planck's constant; k, Boltz- 
mann's constant; ~, reciprocal of radiation wavelength; T, absolute temperature of radiation; 
L, thickness of layer; To, optical thickness of layer. 
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